

ASSEMBLER DIRECTIVES

There are some instructions in the assembly language program which are not a part of

processor instruction set. These instructions are instructions to the assembler, linker and

loader. These are referred to as pseudo-operations or as assembler directives. The assembler

directives enable us to control the way in which a program assembles and lists. They act

during the assembly of a program and do not generate any executable machine code.

There are many specialized assembler directives. Let us see the commonly used

assembler directive in 8086 assembly language programming.

1. ASSUME:

It is used to tell the name of the logical segment the assembler to use for a

specified segment.

E.g.: ASSUME CS: CODE tells that the instructions for a program are in a logical segment

named CODE.

2. DB -Define Byte:

The DB directive is used to reserve byte or bytes of memory locations in

the available memory. While preparing the EXE file, this directive directs the

assembler to allocate the specified number of memory bytes to the said data type that

may be a constant, variable, string, etc. Another option of this directive also initializes

the reserved memory bytes with the ASCII codes of the characters specified as a

string. The following examples show how the DB directive is used for different

purposes.

1) RANKS DB 01H,02H,03H,04H

This statement directs the assembler to reserve four memory locations for a list named

RANKS and initialize them with the above specified four values.

2) MESSAGE DB „GOOD MORNING‟

This makes the assembler reserve the number of bytes of memory equal to the number of

characters in the string named MESSAGE and initializes those locations by the

ASCII equivalent of these characters.

3) VALUE DB 50H

This statement directs the assembler to reserve 50H memory bytes and leave them

uninitialized for the variable named VALUE.

3. DD -Define Double word - used to declare a double word type variable or to reserve

memory locations that can be accessed as double word.

E.g.: ARRAY _POINTER DD 25629261H declares a

 double word named ARRAY_POINTER.

4. DQ -Define Quad word

This directive is used to direct the assembler to reserve 4 words (8 bytes)

of memory for the specified variable and may initialize it with the specified values.

E.g.: BIG_NUMBER DQ 2432987456292612H

 declares a quad word named

BIG_NUMBER.

5. DT -Define Ten Bytes:

The DT directive directs the assembler to define the specified variable

requiring 10-bytes for its storage and initialize the 10-bytes with the specified values.

The directive may be used in case of variables facing heavy numerical calculations,

generally processed by numerical processors.

E.g.: PACKED_BCD 11223344556677889900 declares an array that is 10 bytes in

length.

6. DW -Define Word:

The DW directives serves the same purposes as the DB directive, but it now

makes the assembler reserve the number of memory words (16-bit) instead of bytes.

Some examples are given to explain this directive.

1) WORDS DW 1234H, 4567H, 78ABH, 045CH

This makes the assembler reserve four words in memory (8 bytes), and initialize the words

with the specified values in the statements. During initialization, the lower bytes are

stored at the lower memory addresses, while the upper bytes are stored at the higher

addresses.

2) NUMBER1 DW 1245H

This makes the assembler reserve one word in memory.

7. END-End of Program:

The END directive marks the end of an assembly language program. When

the assembler comes across this END directive, it ignores the source lines available

later on. Hence, it should be ensured that the END statement should be the last

statement in the file and should not appear in between. Also, no useful program

statement should lie in the file, after the END statement.

8. ENDP-End Procedure - Used along with the name of the procedure to indicate the end of

a procedure.

E.g.: SQUARE_ROOT PROC: start of procedure

SQUARE_ROOT ENDP: End of procedure

9. ENDS-End of Segment:

This directive marks the end of a logical segment. The logical segments are

assigned with the names using the ASSUME directive. The names appear with the

ENDS directive as prefixes to mark the end of those particular segments.

Whatever are the contents of the segments, they should appear in the program before

ENDS. Any statement appearing after ENDS will be neglected from the segment.

The structure shown below explains the fact more clearly.

DATA SEGMENT

--------------------- DATA

ENDS

ASSUME CS: CODE, DS: DATA CODE

SEGMENT

--------------------- CODE

ENDS ENDS

10. EQU-Equate - Used to give a name to some value or symbol. Each time the assembler

finds the given name in the program, it will replace the name with the vale.

E.g.: CORRECTION_FACTOR EQU 03H

MOV AL, CORRECTION_FACTOR

11. EVEN - Tells the assembler to increment the location counter to the next even

address if it is not already at an even address.

Used because the processor can read even addressed data in one clock cycle

12. EXTRN - Tells the assembler that the names or labels following the directive are in

some other assembly module.

For example if a procedure in a program module assembled at a different time from

that which contains the CALL instruction ,this directive is used to tell the assembler

that the procedure is external

13. GLOBAL - Can be used in place of a PUBLIC directive or in place of an EXTRN

directive.

It is used to make a symbol defined in one module available to other modules.

E.g.: GLOBAL DIVISOR makes the variable DIVISOR public so that it can be accessed

from other modules.

14. GROUP-Used to tell the assembler to group the logical statements named after the

directive into one logical group segment, allowing the contents of all the segments to be

accessed from the same group segment base.

E.g.: SMALL_SYSTEM GROUP CODE, DATA, STACK_SEG

15. INCLUDE - Used to tell the assembler to insert a block of source code from the

named file into the current source module.

This will shorten the source code.

16. LABEL- Used to give a name to the current value in the location counter.

This directive is followed by a term that specifies the type you want associated with that

name.

E.g: ENTRY_POINT LABEL FAR

NEXT: MOV AL, BL

17. NAME- Used to give a specific name to each assembly module when programs

consisting of several modules are written.

E.g.: NAME PC_BOARD

18. OFFSET- Used to determine the offset or displacement of a named data item or

procedure from the start of the segment which contains it.

E.g.: MOV BX, OFFSET PRICES

19. ORG- The location counter is set to 0000 when the assembler starts reading a

segment. The ORG directive allows setting a desired value at any point in the program.

E.g.: ORG 2000H

20. PROC- Used to identify the start of a procedure.

E.g.: SMART_DIVIDE PROC FAR identifies the

start of a procedure named SMART_DIVIDE and tells the assembler that the

procedure is far

21. PTR- Used to assign a specific type to a variable or to a label.

E.g.: INC BYTE PTR[BX] tells the assembler that we want

to increment the byte pointed to by BX

22. PUBLIC- Used to tell the assembler that a specified name or label will be accessed

from other modules.

E.g.: PUBLIC DIVISOR, DIVIDEND makes the two variables DIVISOR

and DIVIDEND available to other assembly modules.

23. SEGMENT- Used to indicate the start of a logical segment.

E.g.: CODE SEGMENT indicates to the assembler the start of a logical segment

called CODE

24. SHORT- Used to tell the assembler that only a 1 byte displacement is needed to code a

jump instruction.

E.g.: JMP SHORT NEARBY_LABEL

25. TYPE - Used to tell the assembler to determine the type of a specified variable.

E.g.: ADD BX, TYPE WORD_ARRAY is used where we want to increment BX

to point to the next word in an array of words.

Macros:

 Macro is a group of instruction. The macro assembler generates the code in the

program each time where the macro is “called”. Macros can be defined by MACROP

and ENDM assembler directives. Creating macro is very similar to creating a new

opcode that can used in the program, as shown below.

Example:

INIT MACRO MOV

AX,@DATA MOV DS

MOV ES, AX ENDM

It is important to note that macro sequences execute faster than procedures because there is

no CALL and RET instructions to execute. The assembler places the macro instructions

in the program each time when it is invoked. This procedure is known as Macro

expansion.

WHILE:

In Macro, the WHILE statement is used to repeat macro sequence until the

expression specified with it is true. Like REPEAT, end of loop is specified by

ENDM statement. The WHILE statement allows to use relational operators in its

expressions.

The table-1 shows the relational operators used with WHILE statements.

Table-1: Relational operators used in WHILE statement.

FOR statement:

A FOR statement in the macro repeats the macro sequence for a list of data. For

example, if we pass two arguments to the macro then in the first iteration the

FOR statement gives the macro sequence using first argument and in the second

iteration it gives the macro sequence using second argument. Like WHILE statement,

end of FOR is indicated by ENDM statement. The program shows the use of

FOR statement in the macro.

Example1:

DISP MACRO CHR MOV AH,

02H FOR ARG, <CHR>

MOV DL, ARG INT 21H

ENDM ENDM

. MODEL SMALL

. CODE

START: DISP „M‟, „A‟, „C‟, „R‟, „O‟ END START

OPERATOR FUNCTION

EQ Equal

NE Not equal

LE Less than or equal

LT Less than

GE Greater than or equal

GT Greater than

NOT Logical inversion

AND Logical AND

OR Logical OR

CODE FOR 8 BIT ADDER

DATA SEGMENT

A1 DB 50H

A2 DB 51H

RES DB ?

DATA ENDS

CODE SEGMENT

ASSUME CS: CODE, DS:DATA

START: MOV AX,DATA

MOV DS,AX

MOV AL,A1

MOV BL,A2

ADD AL,BL

MOV RES,AL

MOV AX,4C00H

INT 21H

CODE ENDS

END START

CODE FOR 16 BIT ADDER

DATA SEGMENT

 A1 DW 0036H

 A2 DW 0004H

SUM DW ?

DATA ENDS

CODE SEGMENT

ASSUME CS:CODE,DS:DATA

 START: MOV AX,DATA

MOV DS,AX

MOV AX,A1

MOV BX,A2

DIV BX

MOV SUM,AX

MOV AX,0008H

INT 21H

CODE ENDS

END START

ADD33 MATRIX

.MODEL SMALL

.DATA

M1 DB 10H,20H,30H,40H,50H,60H,70H,80H,90H

M2 DB 10H,20H,30H,40H,50H,60H,70H,80H,90H

RESULT DW 9 DUP (0)

.CODE

START: MOV AX,@DATA

 MOV DS,AX

MOV CX,9

MOV DI,OFFSET M1

MOV BX,OFFSET M2

MOV SI,OFFSET

RESULT

BACK: MOV AH,00

MOV AL,[DI]

ADD AL,[BX]

ADC AH,00

MOV [SI],AX

INC DI

INC BX

INC SI

INC SI

LOOP BACK

MOV AH,4CH

INT 21H

END START

END

ARRAY SUM

.MODEL SMALL

.DATA

ARRAY DB 12H, 24H, 26H, 63H, 25H, 86H, 2FH, 33H, 10H, 35H

SUM DW 0

.CODE

START:MOV AX, @DATA

MOV DS, AX

MOV CL, 10

XOR DI, DI

LEA BX, ARRAY

 BACK: MOV AL, [BX+DI]

MOV AH, 00H

ADD SUM, AX

INC DI

DEC CL

JNZ BACK

 END START

ASCIITOHEX

DATA SEGMENT

A DB 41H

R DB ?

DATA ENDS

CODE SEGMENT

ASSUME CS: CODE, DS:DATA

START: MOV AX,DATA

MOV DS,AX

MOV AL,A

SUB AL,30H

CMP AL,39H

JBE L1

SUB AL,7H

 L1: MOV R,AL

INT 3H

 CODE ENDS

 END START

AVERAGE

.MODEL SMALL

.STACK 100

.DATA

 NO1 DB 63H

NO2 DB 2EH

AVG DB ?

.CODE

 START: MOV AX,@DATA

 MOV DS,AX

MOV AL,NO1

ADD AL,NO2

ADC AH,00H

SAR AX,1

MOV AVG,AL

 END START

16 BIT SUB

DATA SEGMENT

 A1 DW 1001H

 A2 DW 1000H

 SUB DW ?

DATA ENDS

CODE SEGMENT

ASSUME CS:CODE,DS:DATA

 START: MOV AX,DATA

 MOV DS,AX

 MOV AX,A1

 MOV BX,A2

 SBB AX,BX

 MOV SUB,AX

 MOV AX,4C00H

 INT 21H

CODE ENDS

 END START

16BIT SUM

DATA SEGMENT

A1 DW 1000H

A2 DW 1001H

SUM DW ?

 DATA ENDS

 CODE SEGMENT

ASSUME CS:CODE,DS:DATA

 START: MOV AX,DATA

 MOV DS,AX

 MOV AX,A1

 MOV BX,A2

 ADC AX,BX

 MOV SUM,AX

 MOV AX,4C00H

 INT 21H

CODE ENDS

END START

8BMUL

DATA SEGMENT

A1 DB 25H

A2 DB 25H

A3 DB ?

DATA ENDS

CODE SEGMENT

ASSUME CS: CODE, DS:DATA

START:MOV AX,DATA

MOV DS,AX

MOV AL,A1

MOV BL,A2

MUL BL

MOV A3,AL

MOV AX,4C00H

INT 21H

 CODE ENDS

 END START

16BIT MUL

DATA SEGMENT

A1 DW 1000H

A2 DW 1000H

A3 DW ?

A4 DW ?

DATA ENDS

CODE SEGMENT

ASSUME CS: CODE, DS:DATA

START:MOV AX,DATA

MOV DS,AX

MOV AX,A1

MOV BX,A2

MUL BX

MOV A3,DX

MOV A4,AX

MOV AX,4C00H

INT 21H

CODE ENDS

END START

EVENODD

DATA SEGMENT

ORG 2000H

FIRST DW 3H

DATA ENDS

CODE SEGMENT

 ASSUME CS:CODE,DS:DATA

 START: MOV AX,DATA

 MOV DS,AX

 MOV AX,FIRST

 SHR AX,1

 JC L1

 MOV BX,00

 INT 3H

L1: MOV BX,01

 INT 3H

 CODE ENDS

 END START

FACTORIAL

 DATA SEGMENT

ORG 2000H

FIRST DW 3H

SEC DW 1H

DATA ENDS

CODE SEGMENT

ASSUME CS:CODE,DS:DATA

 START: MOV AX,DATA

MOV DS,AX

MOV AX,SEC

MOV CX,FIRST

L1: MUL CX

DEC CX

JCXZ L2

JMP L1

L2: INT 3H

CODE ENDS

END START

FIBONOCCI

DATA SEGMENT

ORG 2000H

FIRST DW 0H

SEC DW 01H

THIRD DW 50H

RESULT DW ?

 DATA ENDS

 CODE SEGMENT

 ASSUME CS: CODE, DS:DATA

 START: MOV AX,DATA

 MOV DS,AX

 MOV SI,OFFSET RESULT

 MOV AX,FIRST

 MOV BX,SEC

 MOV CX,THIRD

 MOV [SI],AX

 L1: INC SI

 INC SI

 MOV [SI],BX

 ADD AX,BX

 XCHG AX,BX

 CMP BX,CX

 INT 3H

 CODE ENDS

 END START

FIND NUMBER

.MODEL SMALL

.STACK 100

.DATA

ARRAY DB 63H,32H,45H,75H,12H,42H,09H,14H,56H,38H

SER_NO DB 09H

SER_POS DB ?

.CODE

START:MOV AX,@DATA

MOV DS,AX

MOV ES,AX

MOV CX,000AH

LEA DI,ARRAY

MOV AL,SER_NO

CLD

REPNE SCAS ARRAY

MOV AL,10

SUB AL CL

MOV SER_POS,AL

END START

GREATER

DATA SEGMENT

ORG 2000H

FIRST DW 5H,2H,3H,1H,4H

COUNT EQU (($-FIRST)/2)-1

DATA ENDS

CODE SEGMENT

ASSUME CS: CODE, DS:DATA

START: MOV AX,DATA

 MOV DS,AX

 MOV CX,COUNT

 MOV SI,OFFSET FIRST

 MOV AX,[SI]

 L2: INC SI

INC SI

MOV BX,[SI]

CMP AX,BX

JGE L1

XCHG AX,BX

JMP L1

L1: DEC CX

 JCXZ L4

JMP L2

L4: INT 3H

 CODE ENDS

 END START

HEX TO ASCII

DATA SEGMENT

A DB 08H

C DB ?

DATA ENDS

CODE SEGMENT

ASSUME CS: CODE, DS: DATA

START: MOV AX,DATA

 MOV DS,AX

 MOV AL,A

 ADD AL,30H

 CMP AL,39H

 JBE L1

 ADD AL,7H

 L1: MOV C,AL

 INT 3H

 CODE ENDS

 END START

MAX

.MODEL SMALL

.STACK 100

.DATA

ARRAY DB 63H,32H,45H,75,12H,42H,09H,14H,56H,38H

MAX DB 0

.CODE

START:MOV AX,@DATA

MOV DS,AX

XOR DI,DI

MOV CL,10

LEA BX,ARRAY

MOV AL,MAX

 BACK: CMP AL,[BX+DI]

 JNC SKIP

MOV DL,[BX+DI]

MOV AL,DL

 SKIP: INC DI

 DEC CL

 JNZ BACK

MOV MAX,AL

MOV AX,4C00H

INT 21H

END START

NO OF 1S

DATA SEGMENT

ORG 2000H

FIRST DW 7H

DATA ENDS

CODE SEGMENT

ASSUME CS: CODE, DS: DATA

START: MOV AX,DATA

 MOV DS,AX

 MOV AX,FIRST

 MOV BX,00

 MOV CX,16

 L2: SHR AX,1

 JC L1

 L4: DEC CX

 JCXZ L3

 JMP L2

 L1: INC BX

 JMP L4

 L3: INT 3H

 CODE ENDS

 END START

SMALLER

DATA SEGMENT

ORG 2000H

FIRST DW 5H,2H,3H,1H,4H

COUNT EQU (($-FIRST)/2)-1

RESULT DW ?

DATA ENDS

CODE SEGMENT

ASSUME CS: CODE, DS:DATA

START: MOV AX,DATA

 MOV DS,AX

 MOV CX,COUNT

 MOV SI,OFFSET FIRST

 MOV AX,[SI]

 L2: INC SI

 INC SI

 MOV BX,[SI]

 CMP AX,BX

 JB L1

 XCHG AX,BX

 JMP L1

 L1: DEC CX

 JCXZ L4

 JMP L2

 L4: MOV RESULT,AX

 CODE ENDS

 END START

SUM OF CUBES

DATA SEGMENT

ORG 2000H

NUM DB 1H

RES DW ?

DATA ENDS

CODE SEGMENT

ASSUME CS: CODE, DS: DATA

START: MOV DX,DATA

MOV DS,AX

MOV CL,NUM

MOV BX,00

L1: MOV AL,CL

 MOV CH,CL MUL AL

 MUL CH

 ADD BX,AX

 DEC CL

 JNZ L1

MOV RES,BX

INT 3H

CODE ENDS

END START

SUM OF SQUARES

DATA SEGMENT

NUM DW 5H

RES DW ?

DATA ENDS

CODE SEGMENT

ASSUME CS: CODE, DS: DATA

START: MOV AX,DATA

 MOV DS,AX MOV

CX,NUM MOV BX,00

 L1: MOV AX,CX

 MUL CX

 ADD BX,AX

 DEC CX

 JNZ L1

 MOV RES,BX

 INT 3H

 CODE ENDS

 END START

	Blank Page

